Poisson structures on C[X1; : : : ;Xn] associated with rigid Lie algebras
نویسندگان
چکیده
منابع مشابه
Rigid current Lie algebras
A current Lie algebra is contructed from a tensor product of a Lie algebra and a commutative associative algebra of dimension greater than 2. In this work we are interested in deformations of such algebras and in the problem of rigidity. In particular we prove that a current Lie algebra is rigid if it is isomorphic to a direct product g× g × ...× g where g is a rigid Lie algebra. 1 Current Lie ...
متن کاملPoisson Structures on Lie Algebroids
In this paper the properties of Lie algebroids with Poisson structures are investigated. We generalize some results of Fernandes [1] regarding linear contravariant connections on Poisson manifolds at the level of Lie algebroids. In the last part, the notions of complete and horizontal lifts on the prolongation of Lie algebroid are studied and their compatibility conditions are pointed out.
متن کاملSymplectic Structures Associated to Lie-poisson Groups
The Lie-Poisson analogues of the cotangent bundle and coadjoint orbits of a Lie group are considered. For the natural Poisson brackets the symplectic leaves in these manifolds are classified and the corresponding symplectic forms are described. Thus the construction of the Kirillov symplectic form is generalized for Lie-Poisson groups. On leave of absence from LOMI, Fontanka 27, St.Petersburg, ...
متن کاملOn the Riemann-Lie Algebras and Riemann-Poisson Lie Groups
A Riemann-Lie algebra is a Lie algebra G such that its dual G∗ carries a Riemannian metric compatible (in the sense introduced by the author in C. R. Acad. Sci. Paris, t. 333, Série I, (2001) 763–768) with the canonical linear Poisson structure of G∗ . The notion of Riemann-Lie algebra has its origins in the study, by the author, of Riemann-Poisson manifolds (see Differential Geometry and its A...
متن کاملEuler-Poisson equations on Lie algebras and the N-dimensional heavy rigid body.
The classical Euler-Poisson equations describing the motion of a heavy rigid body about a fixed point are generalized to arbitrary Lie algebras as Hamiltonian systems on coad-joint orbits of a tangent bundle Lie group. the N-dimensional Lagrange and symmetric heavy top are thereby shown to be completely integrable.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Generalized Lie Theory and Applications
سال: 2010
ISSN: 1736-4337
DOI: 10.4172/1736-4337.1000173